

# Transportation Resilience and Accessibility in Crisis

ENSURING RELIABLE TRANSIT DURING EMERGENCY SITUATIONS

Hellenic Centre for Defence Innovation Fri, Oct 3, 2025

rnd@elkak.gr ecosystem@elkak.gr



## Challenge Summary: Introduction

Transportation systems are vital for civilian and defence operations, particularly during crisis events.

Crisis events can disrupt critical infrastructure, hinder emergency response and impede military logistics.

#### **Geographical Challenges**

Greece's rugged terrain and dispersed islands create complex barriers for transportation continuity during emergencies.

#### **Impact of Disruptions**

Transportation disruptions delay emergency responses, hinder evacuations, and obstruct defense logistics in crisis situations.

#### **AI-Powered Solutions**

Innovative AI-driven, dual-use transportation solutions enhance adaptability and autonomy in disrupted environments.

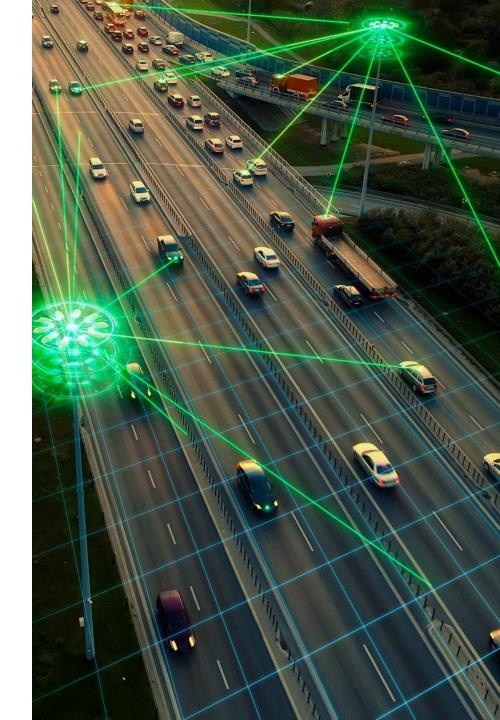
#### Advanced Technologies Integration

Use of geospatial intelligence, autonomous systems, and resilient communications ensures mobility and logistics continuity.

### Challenge Summary: Introduction



The HCDI seeks innovative, dual-use solutions that:


- enhance the resilience and accessibility of transportation systems during crises,
- leveraging geospatial technologies, advanced communications, and autonomous systems

to ensure rapid, secure, and efficient mobility for civilians and defence forces in contested or disrupted environments.

### Exemplar Enabling Technologies:

### 1. Geospatial and Surveying Technologies

- Advanced geospatial analytics for real-time mapping and damage assessment of transportation infrastructure.
- Satellite-based remote sensing and LiDAR systems for monitoring road, port, and airstrip conditions in crisis zones...
- AI-driven platforms for integrating geospatial data with transportation logistics, optimizing routes in disrupted environments.
- Portable surveying tools for rapid assessment of terrain and infrastructure accessibility post-crisis.



#### Exemplar Enabling Technologies:

2. Autonomous and Resilient Transportation Systems

- Autonomous drones and unmanned ground vehicles (UGVs) for delivering supplies and conducting reconnaissance in inaccessible areas.
- Modular, rapidly deployable transportation platforms (e.g., temporary bridges or floating docks) for maritime and coastal regions.
- Al-based traffic management systems for real-time rerouting of civilian and military transport during crises.
- Energy-efficient propulsion systems for autonomous vehicles, optimized for long-range operations in remote areas.



# Exemplar Enabling Technologies: 3. Communication and Integration Technologies

- Resilient communication systems (e.g., O-RAN, satellite, or hybrid RF-optical networks) to support transportation coordination in contested environments.
- Interoperability solutions connecting civilian transport networks with military tactical communication systems.
- Edge computing for processing real-time transportation and geospatial data in areas with limited connectivity.
- Decentralized mesh networks for maintaining communication during infrastructure disruptions, enabling transport coordination.



# Exemplar Enabling Technologies: 4. Secure and Adaptive Systems

- Zero-trust architectures for securing transportation management systems against cyberattacks.
- Post-quantum cryptography to protect data exchanges in transportation logistics and command systems.
- Blockchain-based systems for transparent tracking of supply chains and transport assets during crises.
- Adaptive AI systems for predictive maintenance of transportation infrastructure, reducing vulnerabilities in crisis scenarios





# Transportation Resilience and Accessibility in Crisis

ENSURING RELIABLE TRANSIT DURING EMERGENCY SITUATIONS

Hellenic Centre for Defence Innovation Fri, Oct 3, 2025

rnd@elkak.gr ecosystem@elkak.gr